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Database Management System (DBMS) developers have implemented extensive test suites to test their DBMSs.
For example, the SQLite test suites contain over 92 million lines of code. Despite these extensive efforts, test
suites are not systematically reused across DBMSs, leading to wasted effort. Integration is challenging, as test
suites use various test case formats and rely on unstandardized test runner features. We present a unified
test suite, SQuaLity, in which we integrated test cases from three widely-used DBMSs, SQLite, PostgreSQL,
and DuckDB. In addition, we present an empirical study to determine the potential of reusing these systems’
test suites. Our results indicate that reusing test suites is challenging: First, test formats and test runner
commands vary widely; for example, SQLite has 4 test runner commands, while MySQL has 112 commands
with additional features, to, for example, execute file operations or interact with a shell. Second, while some
test suites contain mostly standard-compliant statements (e.g., 99% in SQLite), other test suites mostly test
non-standardized functionality (e.g., 31% of statements in the PostgreSQL test suite are non-standardized).
Third, test reuse is complicated by various explicit and implicit dependencies, such as the need to set variables
and configurations, certain test cases requiring extensions not present by default, and query results depending
on specific clients. Despite the above findings, we have identified 3 crashes, 3 hangs, and multiple compatibility
issues across four different DBMSs by executing test suites across DBMSs, indicating the benefits of reuse.
Overall, this work represents the first step towards test-case reuse in the context of DBMSs, and we hope that
it will inspire follow-up work on this important topic.
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1 Introduction
Database Management Systems (DBMSs) are large, complex software systems that are widely
used by applications to store and retrieve data. DBMSs consist of various components, such as
query processors [36], log managers [28], storage engines [10], and optimization engines [30, 44].
Thus, DBMSs are usually large and complex. MySQL, one of the most popular open-source DBMSs,
consists of about 3.5M lines of code (LOC). Even SQLite, a relatively lightweight relational DBMS,
contains about 241K LOC. Consequently, DBMSs can be affected by bugs.

Unsurprisingly, DBMSs are typically well-tested. Researchers have developed various techniques
to automate testing DBMSs and successfully found logic bugs [23, 33–35, 38, 40], performance
issues [5, 20, 24], crash bugs [37, 50], and transaction bugs [21]. Developers also test DBMSs
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using test suites. These test suites typically consist of test cases as well as a test runner that
can be used to execute the test cases and validate their results. Most importantly, so-called end-
to-end test suites consist of SQL statements and test the DBMSs from a user perspective. For
example, sqllogictest [1] is SQLite’s test suite, which includes millions of SQL statements. A
common reason for the prevalence of such SQL test suites is to avoid a lock-in regarding their own
implementation details [46].
Despite developers’ significant effort in developing these test suites, test cases are not system-

atically reused between DBMSs, wasting significant developer effort. A recent interdisciplinary
seminar on DBMS reliability stresses the importance of this issue and identified "a common testcase
specification format and a test corpus that can be shared between DBMS engineering teams" as one of
the primary future challenges [9]. We believe that a software engineering angle on this problem is
promising, as test reuse has been a significant concern for the software engineering community.
Reusing test cases poses three challenges. First, the test case formats designed by different

DBMSs’ developers are different, which prevents their direct reuse. Some DBMSs’ test suites use
SQL scripts to execute the engine and validate the results, while others rely on additional annotations
or commands in the test files, for example, for-loops to execute one statement multiple times.
Second, while SQL has been standardized by ANSI/ISO [2], in practice, DBMSs implement various
SQL dialects that differ in syntax and semantics. Most DBMSs provide unique features. For test
cases exercising such features, simply running them on other DBMSs would fail, because they
would not implement these features. For example, PostgreSQL provides functions starting with
“pg_”, which are typically system functions used for administrative tasks or system monitoring.
Test cases containing these functions would likely result in errors when being executed on other
DBMSs. Third, results are usually inconsistent among different DBMSs, or even the same DBMS
in different configurations, for the same SQL query. The reason could be floating-point precision
differences, unstable query plans, or content discrepancies.
To tackle the above challenges, this paper describes a large-scale, systematic study that we

performed on four DBMSs—SQLite, MySQL, PostgreSQL, andDuckDB—to investigate the reusability
of DBMSs’ test suites. To this end, we pose the questions below:

• RQ1: What features do end-to-end DBMS testing frameworks provide? As a first step, we
determined whether the test formats and runners are sufficiently similar to enable reusing
their tests.

• RQ2: What do test cases typically look like? Next, we sought to understand the characteristics
of different test suites’ test cases with respect to, for example, what SQL statements they
included. A high percentage of SQL statements defined by the standard suggests potentially
higher reusability.

• RQ3: What are the challenges of executing end-to-end tests? We aimed to understand the effort
required in developing test runners to execute the test suites. For example, we sought to
understand whether executing the tests would be as simple as sending the SQL statements to
the DBMS under test and validating its results, or whether any additional challenges would
need to be accounted for.

• RQ4: Can test cases written for one DBMS find bugs in other DBMSs? As our main goal was to
investigate whether test suites can be reused, we sought to understand whether, assuming a
common test format and runner, we would be able to successfully execute test cases written
for one DBMS on other DBMSs. Furthermore, we aimed to investigate whether failing test
cases could indicate overlooked bugs.

To answer the above questions, we studied DBMSs’ test suites and derived a test format and test
runners that allowed us to execute the test suites of SQLite, PostgreSQL, and DuckDB on any of
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these DBMSs; besides the insights of the empirical study, we present SQuaLity, a unified test suite,
which, to the best of our knowledge, represents the first step toward systematic test case reuse for
DBMSs.

Our results demonstrate that test reuse can be useful, as we found new bugs, despite the challenges
posed by the various test case formats and DBMS-specific features used in the test cases. For RQ1,
we found that test suites of DBMS used different formats of their test cases, and contained 4 to 112
unique non-SQL commands interpreted by the test runners, for environmental settings or execution
control. For RQ2, we found that SELECT, INSERT and CREATE TABLE are the most common SQL
statements in the test suites, which indicates a high potential for reusability, as these statements
are standardized. However, we also found that test suites contained dialect-specific statements,
posing difficulties for reuse. For RQ3, we found that test cases required specific environments,
extensions, and client dependencies to be tested appropriately. For RQ4, we found 3 crashes as well
as 3 hangs and reported the issues to the developers, overall 3 of which have been fixed. We also
found suspicious discrepancies across SQL dialects, some of which we reported to the developers,
which subsequently led them to discuss the intended semantics of the statements.

In summary, we make the following contributions:

• an empirical study on the characteristic and reusability of different DBMSs’ test suites (see
Section 3–5);

• SQuaLity, a test suite that unifies the tests of SQLite, PostgreSQL, and DuckDB.

2 Methodology
In this paper, we sought to adapt the existing DBMSs’ test suites to a common platform, to study
both the opportunities and challenges of reusing the test suites, aiming to answer the above-posed
research questions. We (1) extracted the test cases of each DBMS and converted them to a common
format, (2) implemented a unified test runner to execute the test cases across DBMSs, and (3)
analyzed the test cases we extracted in step (1) and the results of the test cases in step (2). We detail
these steps in the following paragraphs.

Terminology. We specify the terms we use in the remainder of the paper. A test case consists of an
SQL statement and a specification of its expected behavior. A test file contains several SQL test cases
and a test suite consists of multiple test files. Note that test cases in a test file might have implicit
dependencies between each other. For example, one test case might check that a row was inserted
successfully into a table, while another test case might validate a query’s expected result, which
depends on the successful execution of the INSERT statement. The test runner parses the test files,
executes the test cases, and validates them. In the subsequent paragraphs, the term test suite is used
to denote a combination of both the test runner and the collection of test cases, unless explicitly
stated otherwise. Failed test cases refer to test cases that, when executed by the test runner, produce
behavior that deviates from the expected outcome. Thus, the term refers to both statements that
compute the expected result, or expectedly fail execution.

Selecting DBMSs. We chose four popular open-source DBMSs, whose test suites we subsequently
investigated (see Table 1). We selected these DBMSs because they are highly popular based on
ranking such as the DB-Engines ranking [39], which ranks DBMSs according to their popularity,
or their number of GitHub stars. These DBMSs have also been the target of various automated
testing works [4, 14, 18, 23, 33–35, 37, 50]. MySQL and PostgreSQL are traditional client-server
DBMSs. SQLite and DuckDB [32] are embedded DBMSs, where the database system runs in the
same process as the application it uses, making it particularly suitable for, for example, embedded
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Table 1. DBMS rankings and their test suites information

DBMS DB-Engines GitHub DBMS Test Suite Test
Names Rankings Stars Version Version Files
SQLite 9 4.5k 3.41.1 a22803 622
MySQL 2 9.5k 8.0.33 ea7087 1418
PostgreSQL 4 13.2k 15.2 bc9993 212
DuckDB 103 11.9k 0.8.1 6536a7 2537
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Fig. 1. Number of test case lines per file of each DBMS (logarithmic scale).

devices. DuckDB is an Online Analytical Processing (OLAP) system, while the other three DBMSs
are Online Transactional Processing (OLTP) systems.

Selecting test suites. From the four selected DBMSs, we identified four test suites, SQL Logic Test
(SLT) for SQLite, MySQL Test Framework [3], the PostgreSQL regression test, and the DuckDB test
suite, as shown in Table 1. Many DBMSs use several test suites for different purposes, implemented
in different programming languages. All four DBMSs mentioned above have comprehensive SQL
test suites, with detailed documentation and a large number of test cases (see Figure 1). In our
study, we considered only test suites written in SQL, as we sought to reuse the test suites, and
each DBMS uses SQL as a primary interface. Differences between DBMS implementations would
make it difficult to directly reuse test cases consisting of API calls. For example, test cases from
DuckDB written using the C API, necessitate recompilation and relinking with every modification
in the common header. This process can be time-consuming, particularly when the test suite is
extensive [31]. Besides, the internal APIs that other DBMSs provide would significantly differ. We
omitted these non-SQL test suites, as they could not be easily reused. We disregarded commercial
DBMSs like Oracle or SQL Server, as the test suites and runners are not publicly available.
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SQuaLity. We built a unified test suite, SQuaLity,1 to answer RQ1–RQ4. Its core logic is imple-
mented in about 3,000 LOC to support analyzing test cases and executing them across different
DBMSs. SQuaLity can parse test files from each DBMS into individual SQL statements and extract
the test runner commands. The unified format is currently designed as an internal intermediate
representation. Thus, we do not consider the format as a core contribution of this work and for
brevity, omitted describing it. To execute test cases and obtain the test case results, SQuaLity uses
the Python DBMS connectors, allowing it to compare the DBMSs’ results in a consistent manner. If
we had used the Command Line Interface (CLI) clients, we would have had to parse and convert the
CLI results returned in text format, which differs for each DBMS. SQuaLity executes and validates
the test cases in a statement-by-statement manner. We omitted support for uncommon test suite
features to limit the implementation effort to a reasonable degree—one of the authors was focusing
on the project for a period of 12 months.

Methodology RQ1. We systematically analyzed and identified the common features of each test
suite, with a focus on test case formats and test runner functionalities. We conducted three analyses,
in each of which we could refine the results and insights of the previous analyses. First, we collected
the test cases and documentation of each test suite. In this step, we analyzed how the test runner
interprets elements of test cases, including how it parses the test files, executes the test runner
commands, and validates the test results. Second, we analyzed the commonalities and differences
between these test suites, which are discussed in Section 3. Based on the findings, we implemented
SQuaLity. Third, we parsed and executed the test cases using SQuaLity, which converts various
test case formats into an internal unified format and identifies test runner commands. This, in turn,
allowed us to refine and validate our findings from step one.

Analyzing the test cases. We sought to investigate the test cases at the granular level of individual
SQL statements, which helped us answer the subsequent RQs. However, extracting individual SQL
statements from the test cases is challenging, as the SQL statements are embedded in comments,
test runner commands, and the specified expected results. A naive approach, for example, using
regular expressions, would lead to false positives and negatives due to the complexity of SQL syntax.
Besides, distinguishing different SQL statement types is difficult, considering that we analyzed test
cases from different DBMSs with different dialects. As we sought to understand whether the test
cases are suitable for execution across DBMSs, we adopted a best-effort approach. We obtained the
test cases from each DBMS test suite by implementing a corresponding parser that obtained each
individual runner command and SQL statement within each test file. Then, we relied on sqlparse,2
a best-effort SQL-dialect agnostic parser, to identify the type of each individual SQL statement.

Methodology RQ2. We investigated the test contents by analyzing the individual SQL statements
for SQLite, PostgreSQL, and DuckDB.We omitted the MySQL test suite because its complex test case
format and numerous runner commands make it highly specific to MySQL, limiting its potential
reuse. We wanted to determine how SQL is used in the three test suites, because this could answer
whether the test cases are suitable for reusing. To this end, we first analyzed whether the test
cases use SQL statements whose syntax is defined in the SQL standard [2]—we subsequently refer
to such statements as standard compliant. We categorized all the SQL statements according to
their statement type (e.g., the statement type of SELECT * FROM t0 is SELECT) and observed the
distribution of different SQL commands usage as well as whether they are standard-compliant.
While the analysis was on a statement level, statements could still contain dialect-specific functions
and keywords; for example, while in SELECT to_json ( date ’ 2014 -05 -28 ’);, the SELECT
1Available at https://doi.org/10.5281/zenodo.13896444.
2https://github.com/andialbrecht/sqlparse
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statement is standardized, it references a PostgreSQL-specific JSON function. We addressed this
limitation in RQ4 by investigating whether the DBMSs could successfully produce the expected
results for the statements.

Understanding the testing environment. We observed that the unified test suites need to care-
fully consider the state of the DBMS and environment to successfully execute the test cases. A
naive implementation of a test runner would pass the SQL statements to the DBMSs, but we
found that various dependencies—certain pre-execution set-up and requisites of the DBMS and
the environment—need to be considered to produce the intended results. Each DBMS has unique
configurations, and implementing a new test runner could lead to missing configurations (or mis-
configurations), producing unexpected results that are difficult to detect [45]. The documentation
of the PostgreSQL test suite mentions the above issue.3 Besides, considering that DBMSs allow
interactions through various clients—CLIs and database connectors often provided for various
programming languages—the risk exists that clients might present results in different ways. Test
cases that are strongly dependent on such dependencies could hardly be reused across DBMSs.

Methodology RQ3. We sought to systematically study the dependencies of each test suite as they
complicate the implementation of test runners. Conceptually, we transplanted [8] the test suites into
SQuaLity’s test corpus, that is, by extracting and parsing test cases from the test suite of each DBMS
into a format that SQuaLity supports. We executed and validated the transplanted test suites on the
donor—the DBMS for which the test suites were originally designed. We collected the test results,
including passed test cases, for which the actual behavior matched the expected behavior specified
by the corresponding test cases, and conversely, failed test cases. Then, we randomly sampled—
following the methodology of other studies [7]—100 failed test cases per DBMS to investigate the
dependencies of each test suite. We manually re-executed the test cases using the client of the
donor test suite to determine if they were dependent on specific clients. Additionally, we examined
the documentation of each donor to investigate potential environment and extension-related issues.

Methodology RQ4. We sought to understand whether test cases written for one DBMS (donor)
could expose issues in another DBMS (host). We executed test suites from different donors across
DBMSs using our unified test runner and compared the actual results with the expected results.
We analyzed the failed test cases, which could be caused by SQL dialect differences, settings
discrepancies, or potential bugs. We exhaustively investigated the failures in SLT and applied the
same sampling methods used in RQ3 to the other test suites. For SLT, since it contains mostly
standard-compliant SQL commands and error types are relatively simple, we could investigate all the
failed test cases. Conversely, other test suites exhibit various failures, and a thorough investigation
would cost much effort. To address this, for the results of each test pair (e.g., executing SQLite on the
DuckDB test suite), we randomly sampled a test case and designed a rule that could identify other
cases sharing similar patterns with it, subsequently filtering the remaining cases. We iteratively
applied this procedure until either all cases could be classified according to the established rules, or
the number of rules had reached an arbitrary, but reasonable, predefined limit of 15. When the 15
rules could not classify all the unexpected results, we sampled the execution results.

RQ4 Failure investigation. As part of RQ4, we systematically analyzed the root causes for the
failures, similar to a recent study on transaction incompatibilities [11]. We analyzed a failed test case
in the following steps. First, we isolated the SQL statements from the test file, reduced them [48],
and re-executed them. Second, we manually investigated the documentation of each DBMS for an
explanation of the observed discrepancy. We classified the discrepancy as a compatibility issue,

3https://www.postgresql.org/docs/15/regress-evaluation.html
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Listing 1. SQLite tests typically consist of a single file, where each SQL statement is annotated by its type
and expected effect/result

1 statement ok

2 CREATE TABLE t1(a INTEGER , b INTEGER , c INTEGER)

3
4 statement ok

5 INSERT INTO t1(c,b,a) VALUES (3,4,2), (5,1,3), (1,6,4)

6
7 query I rowsort

8 SELECT a, b FROM t1 WHERE c > a;

9 ----

10 2

11 4

12 3

13 1

where the behavior was documented by the developers. Third, if the documentation failed to explain
the discrepancies, we reported them to the developers.

3 Test Suite Features (RQ1)
Overview. We investigated four test suites—SLT, the MySQL Test Framework, the PostgreSQL

regression tests, and the DuckDB test suite—from two perspectives: test case formats and test
runner commands. Test cases differ in how they are structured in test files and how expected results
are represented. Additionally, different runners use various non-SQL commands, rather than only
sending SQL statements to the DBMS and validating their results.

Test file formats. The test file format varies based on whether the SQL statements and result
specifications are explicitly separated in each file. DuckDB specified their test cases in the SLT
format, with some minor differences from the original SLT format as detailed below. Each test case
of SLT is an independent file consisting of several records, usually SQL statements with a header
that specifies the expected behavior, as shown in Listing 1. In this example, two statements create a
table t1 and insert three rows, which are expected to execute successfully. Then, a SELECT query
fetches the data from the table and uses a rowsort comparator to validate the results, which is
specified after the “----”. We discuss the query result format in the subsequent paragraph. For each
record, its SQL statement is executed individually to validate if the DBMS computes the correct
result [1]. Conversely, the test cases of MySQL and PostgreSQL are not explicitly split in each
test file, that is, the test runner executes the entire test file all at once. Then, it only compares
whether the output of the entire test file matches the expected result. Listing 2 shows an example
of a MySQL test. Each MySQL test case is a pair of two files, a test file, and a result file. A test file is
a series of SQL statements and test runner commands. A result file is a copy of the test file, with
the expected results after each SQL statement.

Result formats. The query results specification for each test case varies across different test
suites. Results in SLT test cases are in value-wise ordering, in which each value of the query must
appear on a separate line, as shown in Listing 1. DuckDB uses both value-wise ordering, as well as
row-wise ordering, the latter of which resembles the structure of a table. Each line in the expected
result represents a table row. Listing 3 shows an example in which the result is in row-wise order.
MySQL uses test results in a row-wise format, with an additional header to denote the column
names. PostgreSQL results, returned by the CLI, are strings representations of the table, containing
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Listing 2. MySQL tests typically consist of two files: a test file that contains SQL and test runner commands,
and a result file that contains the expected output from the runner executing the test file.

1 # t/example.test

2 CREATE TABLE t1(a INTEGER , b INTEGER , c INTEGER);

3 INSERT INTO t1(c,b,a) VALUES (3,4,2), (5,1,3), (1,6,4);

4 SELECT a, b FROM t1 WHERE c > a;

5 # r/example.result

6 CREATE TABLE t1(a INTEGER , b INTEGER , c INTEGER);

7 INSERT INTO t1(c,b,a) VALUES (3,4,2), (5,1,3), (1,6,4);

8 SELECT a, b FROM t1 WHERE c > a;

9 a b

10 2 4

11 3 1

Listing 3. DuckDB test results are usually in row-wise format: each line is a row of the result table

1 statement ok

2 CREATE TABLE t1(a INTEGER , b INTEGER , c INTEGER)

3
4 statement ok

5 INSERT INTO t1(c,b,a) VALUES (3,4,2), (5,1,3), (1,6,4)

6
7 query I

8 SELECT a, b FROM t1 WHERE c > a;

9 ----

10 2 4

11 3 1

the table header, values, and row count. All formats convey information about table values. Thus,
lossless information transfer between the formats is possible.

Non-SQL commands overview. We listed the Non-SQL commands in Table 2 and detail them in
the next paragraphs. “✓” indicates that the corresponding DBMS’s test suite supports the feature,
while the number indicates the total number of supported commands. Test suites can implement
the same functionalities using different names; we grouped them together in the table. The MySQL
test suite contains the most runner commands, making it difficult to reuse its test cases. Conversely,
SLT supports only few runner commands. DuckDB’s test suite format is based on SLT, but provides
additional functionality. PostgreSQL test cases are SQL scripts including psql commands. Psql4 is
the CLI for PostgreSQL and is used to execute the PostgreSQL test cases.

Environmental settings. Commonly, test runners support commands to set up the testing envi-
ronment. Include is used to read test code from other files, which enables developers to extract
contents shared by multiple test files. Set Variable is used to set a specific variable that may be used
in the following test procedure. Load loads data or custom functions from a specific source location.

Execution flow control. Test runners support commands to manage the execution of SQL state-
ments, allowing for more control than just sequential execution. Loop is used to execute the specific
commands several times. Skiptest is used to conditionally skip the execution of tests. For example,
in SLT, developers used these commands (see Listing 4) to implement test cases where the SQL
4https://www.postgresql.org/docs/current/app-psql.html
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Listing 4. In MySQL, the "/" operator consistently performs floating-point division, even if both operands are
integers. The "DIV" operator should be used if an integer division is needed.

1 onlyif mysql # DIV for integer division:

2 query I rowsort label -11

3 SELECT ALL 62 DIV ( + - 2 )

4 ----

5 -31

6
7 skipif mysql # not compatible

8 query I rowsort label -11

9 SELECT ALL 62 / ( + - 2 )

10 ----

11 -31

Table 2. Non-SQL commands of each DBMS test runner

Feature SQLite MySQL PostgreSQL DuckDB

Include - ✓ ✓ -
Set Variable ✓ ✓ ✓ ✓
Load - ✓ ✓ ✓
Loop - ✓ - ✓
Skiptest ✓ - ✓ ✓
Multi-Connections - ✓ ✓ ✓

CLI Commands - - 114 -
Runner Commands 4 112 - 16

syntax varies from one DBMS to another. As another example, in DuckDB, require sqlsmith
is used to check whether the current DuckDB has loaded the sqlsmith extension, which is a
popular fuzz testing tool; if not, subsequent statements are skipped. Some test runners support
Multi-Connections, enabling several connections to one database at a time.

Psql CLI commands. As mentioned above, the PostgreSQL regression test suite uses the CLI to
execute the tests, which provides meta-commands or shell-like features. In total, the suite makes use
of 59 out of 114 unique CLI commands. Certain CLI commands have corresponding SQL commands
in other DBMSs, for example, \c testdb is equivalent to USE testdb, which changes the current
database to testdb. Some commands handle client-level functions, for example, \setenv is used
to set an environmental variable. We did not seek to interpret and implement these commands;
they are processed by the client of the DBMS, not the test runner.

MySQLTest commands. The MySQL Test Framework supports 112 unique runner commands.
Besides the features listed in Table 2, the test runner of MySQL supports various commands for local
file operations (e.g., writefile filename), server monitoring (e.g., shutdown_server [timeout]),
and shell interaction (e.g., exec command). This enhances the test runner’s ability to test the MySQL
server, but the large amount of runner commands poses challenges to reusing the test cases.
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Fig. 2. Distribution of SQL statement types in each DBMS test suite, with standard-compliant SQL statements
denoted in bold.

Table 3. The percentage of standard-compliant SQL statements among the test cases

DBMS Overall Exclusive
Test Suite Standard SQL Standard Files
SQLite 99.76% 63.92%
PostgreSQL 68.89% 10.37%
DuckDB 76.14% 16.24%

The SQLite, PostgreSQL, and DuckDB test suites use easily parsable test formats, whereas
MySQL’s cases embedded runner commands, which complicates reusability. Besides, the MySQL
test runner’s support for 112 runner commands (e.g., compared to 4 in SQLite), and PostgreSQL’s
use of CLI commands both pose challenges to reuse.

4 Test Case Patterns (RQ2)
We analyzed the SQL test cases, primarily by quantifying the frequency of each type of SQL
statement present within the test suites. Figure 2 shows the percentage of SQL statements in the
three selected DBMSs’ test suites. We ordered the SQL statements based on their mean occurrence
frequency across three different DBMSs and selected the 15 highest-ranking ones for presentation.

Overview. As shown in Table 3, SLT is the most standard-compliant test suite. Almost all test
cases consist of standard-compliant SQL statements. However, only 63.9% of the SLT test files
contain only standard-compliant test cases, because 35.9% of the test files contain CREATE INDEX
statements, used to create an index on columns to improve the speed of data retrieval [15], which
are not specified in the ANSI/ISO standard, despite being widely supported by DBMSs. If we counted
CREATE INDEX as a standard-compliant statement, a higher standard compliance, that is, 99.8% of
the test files contain standard-compliant test cases, could be achieved. The proportion of standard
SQL statements in PostgreSQL is 68.9%, which is the lowest.

Common SQL statements. As shown in Figure 2, all test suites contain common and standard-
compliant SQL statements, such as SELECT, CREATE, and INSERT, demonstrating the potential of
reusing the test cases. SELECT allows querying data from the database. It is the most used SQL
statement among all test suites. CREATE is one of the Data Definition Language (DDL) statements in
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Listing 5. By altering the explain_output setting to OPTIMIZED_ONLY, the display changes from the default
physical plan to present the optimized logical plan.

1 CREATE TABLE integers(i integer , j integer , k integer);

2 INSERT INTO integers VALUES (5, 5, 5), (10, 10, 10);

3 PRAGMA explain_output = OPTIMIZED_ONLY;

4 EXPLAIN SELECT k FROM integers where j=5;

SQL, and it is primarily used to create tables. DROP and ALTER are also DDL statements that remove
or modify the tables the previous CREATE statements create. Many other statements (e.g., SELECT
and INSERT) operate on the table or a database object that was created using the CREATE statement.
INSERT is used to insert data into a table. It is frequently used following a CREATE TABLE statement.
UPDATE and DELETE are used to modify and remove the data in the table, respectively. While SQLite
has the largest test suite SLT, with 622 test files, and each test file has 11907 SQL statements on
average, it contains only such fundamental SQL statements as above. The prevalence of standard
SQL statements in SLT indicates a higher likelihood of being suitable for reuse.

Unstandardized SQL statements. The test suites of PostgreSQL and DuckDB, despite having a
smaller number of test cases, contain a broader range of statements, including SQL statements
related to transactions, query plans, and DBMS-specific features.
Statements such as SET in PostgreSQL (3.62%), and PRAGMA in DuckDB (6.99%) configure the

DBMS. Neither of the statements is specified by the SQL standard. SET is used for changing session-
level settings. PRAGMA is specific to SQLite and DuckDB. For example, DuckDB uses a PRAGMA
statement to change how query plans are displayed, as shown in Listing 5. These statements inhibit
the reuse because they are not standard-compliant and may not execute successfully across different
DBMSs. DBMSs like SQLite silently ignore unknown parameters specified by PRAGMA. Subsequently,
unsupported settings can lead to unexpected results in those test cases relying on them.
In addition to SELECT statements, test suites also apply other non-standard queries to validate

specific properties of the system. EXPLAIN statements are used in PostgreSQL and DuckDB test
suites to check the query plan correctness. DuckDB uses these statements to validate whether
optimizations are expectedly performed [31]. Listing 5 shows SQL statements from DuckDB test
cases. The EXPLAIN statement retrieves the optimized logical query plan, which describes how the
DBMS retrieves data from the table integers and filters based on the specified predicate. Test
cases using the EXPLAIN statement are unlikely to be reusable, because EXPLAIN is not a standard
SQL statement, and the result formats of query plans differ between DBMSs [6].

BEGIN and ROLLBACK are statements that relate to transactions. Although START TRANSACTION is
the standard SQL statement to start a transaction, we observed that these test suites more frequently
use BEGIN. SQLite even lacks support for the standard syntax. Typically, a transaction is either
committed using COMMIT (0.24%) or aborted using ROLLBACK (0.42%). Considering that ROLLBACK
and COMMIT are standard SQL, less effort is needed to reuse these test cases.

Infrequently used SQL statements. An average of 10.6% statements are infrequently used in the
test suite and thus not shown in Figure 2, such as WITH statements (0.48%) to define a Common Table
Expression (CTE) and EXECUTE statements (0.39%) to run a stored procedure or prepared statement.
We also found non-existent types of SQL statements. First, developers specified intentionally
incorrect statements to test the parser of DBMS, and our analyzer did not attribute these statements
to the correct type (e.g., SELEC in DuckDB test cases). Second, as we used a best-effort parser to
analyze the SQL statement, certain corner cases (e.g., (((((select * from int8_tbl)))))would
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Fig. 3. Distribution of tokens in WHERE predicates of SELECT statements. 0 shows SELECT statements without
WHERE clause.

Listing 6. Examples of SELECT statements in test suites

1 SELECT interval '1-2'; -- 0 token

2 SELECT a, b FROM t1 WHERE c > a; -- 3 tokens

3 SELECT unit.total_profit FROM unit , unit2; -- Implicit join

4 SELECT a, test.b, c FROM test INNER JOIN test2 ON test.b = 2 ORDER BY c; -- Inner

join

be classified as (((((SELECT). However, these instances are rare, accounting for less than 0.1% of
the total test cases, and can therefore be considered negligible.

SELECT query complexity. In terms of SELECT statements, we found that most are rather simple.
This is demonstrated in Figure 3, which shows the number of tokens in WHERE predicates. Most
queries, namely 79.9%, lack WHERE clauses, such as the example query shown in line 1 of Listing 6.
Based on our understanding of inspecting the test cases, queries without WHERE clauses were
often used to test the specific functions and operators by evaluating them on constants, without
referencing any tables, or to fetch and validate the data from the table after specific operations. On
average, 13.5% of queries contain 3 to 10 tokens in the predicates, such as the query shown in line 2
of Listing 6. 1.6% of SLT query predicates consist of more than 100 tokens, indicating the use of
complex expressions. We also analyze the complexity of JOIN usage. Only 7.2% of queries consist
of either implicit (e.g., line 3 in Listing 6) or explicit joins (e.g., INNER JOIN, LEFT JOIN and RIGHT
JOIN). Specifically, 5.1% of queries contain implicit joins and 1.1% of queries contain INNER JOIN
in the three test suites.

The results suggest that DBMSs typically test DBMS-specific functionality, such as illustrated by
more than 80% of test files in PostgreSQL and DuckDB containing non-standard SQL statements.
SQLite seems to be an exception, as 99.76% of statements are standard-compliant.

5 Test Case Dependencies (RQ3)
Overview. Table 4 shows the results of validation on the donor (e.g., running SLT on SQLite) using

SQuaLity. SQuaLity executed close to 6 million test cases from more than 7.4 million test cases
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Table 4. Running donor test suites against donor

DBMS Total Executed Failed
Names Test Cases Cases Cases
SQLite 7,406,130 5,939,879 2
PostgreSQL 36,677 35,534 4,075
DuckDB 33,113 20,619 1,035

Table 5. Classification of a sample of 100 failing test cases for each DBMS and its test suite

Reason SQLite DuckDB PostgreSQL

Environment
File Paths 0 22 14
Setting 0 0 7
Set Up 0 0 67

Extension Extension 0 0 10

Client
Format 0 58 0
Numeric 0 17 0
Exception 0 2 0

Misc Runner 2 1 2

that we collected. The remaining tests included directives that caused them to be skipped. Failed
cases refer to test cases where SQL statements behave unexpectedly, as introduced in Section 2.
These were due to dependency issues, which indicate challenges for reuse. The detailed reasons are
shown in Table 5, and we will discuss them in the subsequent paragraphs.

Pre-filtered test cases. As shown in Table 4, SQuaLity skipped 19.80%, 3.12%, and 39.47% of the
test cases of SQLite, PostgreSQL, and the DuckDB test suite, respectively. SLT supports the skiptest
runner command, which can be used when the test case is DBMS-specific. When testing against
SQLite itself, some test cases were filtered intentionally, because they were designed to be executed
on other DBMSs, and thus the test runner did not execute all the test cases. Similarly, in DuckDB,
the runner command require halts all the following test cases if one extension has not been loaded.
PostgreSQL test cases are not explicitly separated, as mentioned in Section 3. Thus, we omitted test
cases that were difficult to parse.

Environmental settings. As shown in Table 5, in 22 out of the 100 sampled failed test cases in
DuckDB, and in 88 for PostgreSQL, the test cases are dependent on specific environment settings.
The difference between the environment of developers and ours leads to discrepancies between
the actual and expected results. First, 22 of the DuckDB test cases and 14 of the PostgreSQL ones
failed due to incorrect file path names that resulted in failures to load data, which affected the
subsequent test cases. The data source was typically specified by hardcoded paths or paths set
by environmental variables, and incorrect path names could result in no loaded data. Second, 7
PostgreSQL cases failed due to incorrect configurations. DBMSs support locale settings to manage
internationalization, which led to the difference between actual results and expected results. Several
other configurations including different system configurations, testing schema names, and default
output format could also lead to discrepancies. Third, 67 failed PostgreSQL cases were due to the
unsuccessful setup for the test database. For example, PostgreSQL used a scheduler to execute
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Listing 7. This CREATE FUNCTION statement is used to create a function in current database by loading C
library from “regresslib”.

1 CREATE FUNCTION test_opclass_options_func(internal)

2 RETURNS void

3 AS :'regresslib ', 'test_opclass_options_func '

4 LANGUAGE C;

specific test cases first to set up certain environment settings. Conversely, test files in SQLite
and DuckDB have no dependencies on each other and can be executed independently. Test cases
associated with environmental settings pose challenges for reusability, as different DBMSs use
diverse default configurations and environment setting methods.

Database engine extensions. 10 of the failing PostgreSQL test cases require extensions to be loaded,
such as the shared library regress.so, which exposes functions such as shown in Listing 7, which
are used in the subsequent test cases. Lack of or failure to load these functions could result in the
failure of the current statement and subsequent test cases. Besides, as previously noted, DuckDB
test cases use the runner command require to explicitly state their required extensions, and the
remaining test cases are not executed if the required extension is not loaded. Thus, we encountered
no failed test cases in our DuckDB samples due to this issue, since 26.2% of the cases have been
pre-filtered. Extension-related test cases inhibit reusing, as, typically, extensions are DBMS-specific.

Clients. 77 of the failing DuckDB test cases rely on specific clients. Our selected DBMSs support
various client APIs, and the respective test runners are implemented using different client APIs, C
API for SQLite, C++ for DuckDB, and psql for PostgreSQL. Certain result objects are differently
presented depending on the client, which led to discrepancies. Listing 8 shows an example of result
discrepancies under different clients. The discrepancies mainly arise from variations in output
formats, such as the representation of nested data types like lists and structs, binary objects, and
numeric data, which affected 58 DuckDB test cases. Numeric data issues arise from the original
test runner’s lenient comparison, as our test runner demands an exact match with the expected
results, given that it could provide consistency and catch subtle issues. This affected 17 DuckDB
test cases. As exemplified in Listing 10, the expected result listed in the test case is 4999, while the
true expected answer should be 4999.5. The discrepancies in result formats caused by different
clients add to the difficulty of reusing the test cases.

Finally, we observed issues in clients, as shown in Listing 11. A Not Implemented Error arose
in the DuckDB Python interface, while the same statements were executed as expected in the CLI,
despite both being executed on version 0.8.1. We found one case whose result differs between the
CLI and Python clients (see Listing 9). We have reported this issue to the developers,5 after which
they implemented tests for various client connectors. These cases demonstrate that specific clients
are required for some test cases.

Implications. Omitted test cases from the donor systems were due to dependency issues related
to environment, extension, and client, as shown in Table 5. Dependencies on these components
are often related to DBMS-specific features and configurations that are not defined by the SQL
standard and vary between DBMSs (e.g., one cannot use MySQL CLI on PostgreSQL). As a result,
reusing these test cases across different DBMSs is challenging and provides limited benefits. We
believe that, when designing a unified test suite for reuse, minimizing dependencies is crucial. Each
test case should be independent of others and free from DBMS-specific features.
5https://github.com/duckdb/duckdb/issues/5413
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Listing 8. Different results (after converting to string)

1 SELECT ARRAY[1,2,3,'4'];

2 -- Result in DuckDB

3 [1, 2, 3, 4]

4 -- Result in PostgreSQL

5 {1,2,3,4}

6 -- Result in DuckDB Python API

7 ['1', '2', '3', '4']

Listing 9. Different results (after flattening values in a line) when executing the same query using the CLI
and Python interfaces of DuckDB

1 SELECT 1 UNION ALL SELECT * FROM range(2, 100) UNION ALL SELECT 999 LIMIT 5;

2 -- CLI: 1 2 3 4 5

3 -- Python interface: 1 999 2 3 4

Listing 10. In DuckDB, floating-point results are considered matching if the difference is less than 1%

1 statement ok

2 create table quantile as select range r, random () from range (10000) union all

values (NULL , 0.1), (NULL , 0.5), (NULL , 0.9) order by 2;

3
4 query I

5 SELECT median(r) FROM quantile -- Actual: 4999.5

6 ----

7 4999

Listing 11. Executing these statements using the DuckDB Python interface results in an error

1 CREATE TABLE tbl1 (union_struct UNION(str VARCHAR , obj STRUCT(k VARCHAR , v INT)));

2 INSERT INTO tbl1 VALUES ({'k': 'key1', 'v': 1});

3 SELECT * FROM tbl1; -- Expected: {'k': key1 , 'v': 1}

We identified three major kinds of test case dependencies concerning the environment, exten-
sions, and clients. The SQLite test cases require few dependencies. 88% of the failed PostgreSQL
test cases were environment-related, and 77% of the DuckDB ones relied on specific clients.

6 Test Suite Compatibility (RQ4)
We executed the test cases from SLT, the PostgreSQL regression test suite, and the DuckDB test
suite on SQLite, PostgreSQL, DuckDB, and MySQL. First, we present the overall execution results
of these test suites. Second, we show the crashes and hangs found during execution, which are
excluded from the above results. Third, we investigate the failed test cases found during execution.
All the test cases have been reduced [47] for presentation.

Overall execution. Figure 4 shows a heatmap that shows the execution results of running the
test suites across different DBMSs, excluding test cases that crash or hang the DBMS engine. SLT
was the most compatible test suite, as all three other DBMSs passed over 98% of its test cases.
The PostgreSQL regression suite was the most incompatible one. It obtained an average success
rate of 28.1%. The DuckDB test suite obtained an average success rate of 45.2%. These results
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on SQLite.

Listing 12. A crash in DuckDB

1 ALTER SCHEMA a RENAME TO b;

Listing 13. A crash related to transaction handling in DuckDB

1 CREATE TABLE a (b int);

2 BEGIN;

3 INSERT INTO a VALUES (1);

4 UPDATE a SET b = b + 10;

5 COMMIT;

6 UPDATE a SET b = b + 10;

Listing 14. A crash in a recursive CTE in MySQL

1 WITH RECURSIVE t(x) AS (

2 SELECT 1

3 UNION ALL

4 (SELECT x+1 FROM t WHERE x < 4

5 UNION

6 SELECT x*2 FROM t WHERE x >= 4 AND x < 8)

7 ) SELECT * FROM t ORDER BY x;

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 253. Publication date: December 2024.



Understanding and Reusing Test Suites Across Database Systems 253:17

Listing 15. A recursive CTE led to an infinite loop

1 WITH RECURSIVE x(n) AS (

2 SELECT 1 UNION ALL

3 SELECT n+1 FROM x WHERE n IN (SELECT * FROM x)

4 ) SELECT * FROM x;

Listing 16. An eponymous table-value function in PostgreSQL triggered an overflow in SQLite

1 SELECT count (*) FROM

2 generate_series (9223372036854775807 ,9223372036854775807);

were expected based on our analysis in Section 4, as the PostgreSQL regression suite contains the
lowest percentage of standard-compliant SQL test cases and makes use of CLI commands, while
SLT contains the most standard-compliant cases. MySQL achieved a higher success rate on SLT
compared to the other two test suites, because of the skiptest runner commands in SLT (see
Section 3), which restricted the runner to execute only general test cases and those implemented in
the MySQL SQL dialect. We investigated the reason for the crashes and hangs, and examined the
compatibility issues, which we explain in the next paragraphs.

Crashes. We found three crashes—unexpected terminations of the DBMS. Listing 14 shows a
recursive CTE that crashed the MySQL server when executing FollowTailIterator::Read(),
which has been addressed. Given the critical nature of the bug, it was assigned a CVE (2024-20962).
We discovered this crash using the DuckDB test suite. Listing 12 shows a test case leading to a crash
in DuckDB 0.7.0. In the previous version (0.6.1), DuckDB correctly threw an Not implemented
Error. Listing 13 shows a crash that was caused by UPDATE after the COMMIT of the transaction. We
discovered these two crashes by executing the PostgreSQL regression test suite on DuckDB’s latest
release. While DuckDB had already accumulated a large test suite, the fact that we encountered
these crashes highlights the importance of test case reuse.

Hangs. We observed three hangs—the DBMS entered an infinite loop when executing a statement
or exhibited an overly-long execution time. We found one of themwhen executing a query from SLT
on MySQL, which joined more than 40 tables. This caused MySQL to take more than one minute to
compile and determine an efficient join order in the default setting, optimizer_search_depth =
62. By replacing this value with 0, the query could be executed within one millisecond. Although
this behavior was expected according to the MySQL documentation,6 the other three DBMSs could
return results in a reasonable time with default settings. This suggests that users might need to
change settings when migrating databases from other systems. We found another hang when
executing one PostgreSQL test (with.sql) on DuckDB, as shown in Listing 15. PostgreSQL and
MySQL prevented this query from being executed by issuing an error, while it caused an infinite
loop in DuckDB. This hang reflects differences in the design philosophies behind the DBMSs.
Developers mentioned it is a deliberate design for DuckDB, and adding constraints is strongly
against DuckDB’s friendly SQL [29] because it would restrict users. In addition, in a short, ad-hoc
fuzzing campaign, in which we used the test suites as seed inputs, we discovered one hang (see
Listing 16), which was confirmed as a bug7 and subsequently fixed. The hang was triggered when
executing the generate_series() function in SQLite. This function is a table-value function from
PostgreSQL that SQLite implemented as an extension. This bug was introduced more than 3 years
6https://dev.mysql.com/doc/refman/8.0/en/controlling-query-plan-evaluation.html
7https://sqlite.org/forum/forumpost/754e2d
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Table 6. Executing SQLite, DuckDB, PostgreSQL, and MySQL on the SLT, DuckDB test suite, and PostgreSQL
regression test suite. We comprehensively analyzed the SLT test results, and randomly sampled and analyzed
100 test cases from DuckDB test suite and PostgreSQL regression test suite.

Failed Reasons SQL Logic Test DuckDB Test Suite PostgreSQL Test Suite
Granularity DuckDB PostgreSQL MySQL SQLite PostgreSQL MySQL SQLite DuckDB MySQL

Statements 1,317 4,905 915 37% 25% 41% 54% 53% 58%
Functions 0 0 0 34% 26% 18% 11% 10% 8%
Types 43 12 0 13% 36% 22% 15% 23% 16%
Operators 7,075 6,069 0 14% 0% 10% 20% 3% 16%
Configurations 0 0 0 0% 3% 4% 0% 8% 2%
Semantic 104,033 609 0 2% 9% 2% 0% 3% 0%
Misc 0 0 0 0% 1% 3% 0% 0% 0%

Timeout 0 0 1 0 0 0 1 1 0
Crash 0 0 0 0 0 1 0 2 0

ago, which stresses the significance of test suite reuse, as it had been overlooked by other automated
testing tools [35, 50].

Failed cases. Failed test cases are due to (1) unexpected execution statuses and (2) unexpected
query results. When executing SLT on the three other hosts, 16.6% of the failed test cases were
due to unexpected execution statuses, and the percentage is 94.9% and 96.0% for the DuckDB
and PostgreSQL test suites. The reason for the higher execution success rate of SLT is that the
SLT test cases contain mostly standard-compliant SQL statements, while the other two contain
non-standard statements as well as DBMS-specific functions and data types. For example, the
pg_typeof() function to obtain the data type of its argument is implemented by PostgreSQL and
DuckDB, while no similar built-in function is supported in MySQL. Conversely, failed test cases in
SLT were mostly due to unexpected query results, while the other two contain only a few. Certain
functions or operators share the same name between DBMSs while the semantics are not the
same, which mostly contributed to these mismatched query results. For example, when executing
query SELECT COALESCE(1, 1.0);, SQLite returns the integer value 1, PostgreSQL returns the
floating-point value 1, and both MySQL and DuckDB return the floating-point value 1.0. However,
all four DBMSs return the integer value 1 for SELECT COALESCE(1, 1);.

Incompatibility issues. We analyzed the root causes of the failed cases and categorized them
into several types: unsupported (1) SQL statements, (2) functions, (3) types, (4) operators, as well
as issues caused by (5) system settings, and (6) inconsistent semantics. We group together other
reasons as a category miscellaneous, abbreviated as misc. Note that one failed test case might be
due to multiple issues. We selected the first error type that we identified—often indicated by an
error message from the DBMS. Table 6 shows the reasons for failed test cases. Each cell in the table
represents the count or percentage of 100 samples of the failed cases. For example, when executing
the DuckDB test suite on SQLite, 37% of the samples were due to unsupported SQL statements.

The unsupported Statements category refers to SQL statements from donor test cases that fail to
execute on the host. These kinds of failures can occur for various reasons: either the host system
lacks support for the statement, or there are differences in syntax and restrictions. We found 9, 30,
and 26 of these kinds of issues when executing the SQLite, DuckDB, and PostgreSQL test suites,
respectively. Fewer test cases in SLT failed for this reason compared to those in the DuckDB and
PostgreSQL suites, which aligns with the findings from RQ2. First, non-standard SQL statements
(e.g., PRAGMA and SET), which we mentioned in Section 4, led to most of the unexpected failures.
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Second, DBMS-specific clauses in statements also led to failures, for example, one unique feature
ASOF_JOIN in DuckDB caused a failure. Third, DBMSs may apply different constraints on specific
operations; for example, different restrictions concerning the WITH statement, which we mentioned
in the paragraphs above. These statement-level issues can lead to unexpected failures during
execution and are the primary cause of most of the failed cases we encountered.
The Functions category refers to predefined functions not supported on the host. No SLT test

case contains an unsupported function, while 9 and 7 issues in DuckDB and PostgreSQL test
suites, respectively, are related to unsupported functions, such as functions for querying system
information, text processing, or nested data. For example, in DuckDB, SELECT range(3); returns
a three elements list [0,1,2], while the other DBMSs do not support range().

The Types category refers to the donor-specific data types that are not supported in the host (e.g.,
nested data and big integer). 1, 5, and 10 issues are related to types in the SQLite, DuckDB, and
PostgreSQL test suites, respectively. One issue that caused MySQL to fail to execute the DuckDB
and PostgreSQL test cases is its requirement to specify the maximum length for the VARCHAR type.
Note that, SQLite had fewer issues in the Types category, as it has a dynamic type system,8 which,
for example, allows users to store values of any data type in a column, even if the declared column
does not match the value’s type. This is the reason why SQLite achieves a higher success rate on
the PostgreSQL and DuckDB test suites than others.
The Operators category refers to unsupported donor-specific operators that either lead to un-

expected syntax errors or encounter incompatible operand pairs. Examples include the type cast
operator (::) mentioned above, and the unsupported + operator between string and integer in
PostgreSQL, which is supported in SQLite. We identified 2, 3, and 6 issues in SQLite, DuckDB, and
PostgreSQL test suite, respectively.

The Configurations category refers to unsupported configuration variables in the corresponding
host. For example, one DuckDB test file initially uses SET default_null_order=‘nulls_first’;
to change the setting for the order of null values. This statement failed in PostgreSQL because it is
an unknown system setting. As a result, when executing subsequent test cases in the same test file,
PostgreSQL is unable to return values in the expected order.
The Semantic category refers to functions, operators, or statements that share the same name

but exhibit semantic inconsistencies. Specifically, they return different values when executed under
different DBMSs, leading to discrepancies in query results. We observed 5, 7 and 3 related issues
in SQLite, DuckDB, and PostgreSQL test suite. Although SLT has a large number of failing tests
due to semantic reasons, most of the cases have the same root cause. For example, all 104K failing
cases for DuckDB are due to the inconsistent behavior for the / operator, which is a decimal
division in DuckDB, but an integer division in SQLite. Some DBMSs would be built compatibly with
other DBMSs (e.g., DuckDB aims to partly match the semantics of PostgreSQL). SQuaLity could
identify cases that exhibit inconsistencies, offering developers guidance, as these inconsistencies
would not cause exceptions, but silently produce unexpected results, which are difficult to notice.
Listing 17 and Listing 18 show differences in anonymous records sorting and eponymous functions
(e.g. PostgreSQL functions starting with “pg_”) respectively between DuckDB and PostgreSQL.
We reported the issue in Listing 17 to the developers, and after a discussion, they concluded to
deliberately deviate from other DBMSs like PostgreSQL.

Summary statistics. We present summary statistics of test cases of each test suite in Table 7.
We manually classified the test cases based on the failures due to feature, syntax, and semantic
differences. SLT is the most standard-compliant test suite, and thus only 12.9% of the failures were
due to unique features or deviations in syntax. Conversely, the PostgreSQL and DuckDB test suites
8https://sqlite.org/flextypegood.html
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Table 7. Summary of test cases from each test suite that bring difficulties for reuse

SQLite DuckDB PostgreSQL
Dialect-specific features 0.1% 70.2% 72.7%
Syntax differences 12.8% 23.9% 26.4%
Semantic differences 87.1% 5.9% 0.9%

Listing 17. The result value of DuckDB is true, whereas other DBMSs return null.

1 SELECT (null , 0) > (0, 0);

2 -- DuckDB: true

3 -- PostgreSQL: null

Listing 18. DuckDB always return true even if passing invalid arguments to this function.

1 select has_column_privilege (1,1,1);

2 -- DuckDB: true

3 -- PostgreSQL: ERROR

consist of test cases for unique features, which caused most failures when executing test cases
across different DBMSs.

Implications. We summarize the below implications about the test suite compatibility. First, it is
difficult to reuse dialect-specific features, such as unique data types. Second, we believe that the
syntax differences could be partially addressed by using SQL translators—potentially by using large
language models—by converting SQL statements from one dialect to another to prevent errors.
Third, manual effort is necessary to account for semantic differences—such as functions, operators,
or statements that share the same name but exhibit semantic inconsistencies. These differences
may arise from developers’ different design choices or potential bugs in the system. Developer
inspection of these cases is beneficial for identifying bugs and compatibility issues, as well as
improving documentation. This effort is feasible, because semantic issues comprise only a small
portion of all failures.

We reused three test suites across four DBMSs, which we used to find 3 crashes and 3 hangs.
Sampling 100 failing tests, we identified various compatibility issues: 18 in SQLite, 59 in DuckDB,
and 53 in PostgreSQL, which can be attributed to SQLite’s test cases exercising mostly standard
functionality, while the latter two comprised more DBMS-specific test cases.

7 Related Work
DBMS Testing. Methods have been proposed for automatically identifying bugs in DBMSs in

recent years. SQLancer creates databases and queries, and then autonomously validates the results
provided by the DBMS [4, 33–35]. Transformed Query Synthesis (TQS) [40] detected bugs of join
optimization in DBMSs and TxCheck [19] detected transactional bugs by constructing graph-based
oracles. APOLLO [20] identifies performance bugs by executing queries on both an older and a
newer version of the same DBMS. Our test suite has the potential to augment the efficiency of these
methods. In particular, it can be employed to serve as a basis for additional mutations. For example,
Sedar [13] successfully detected crashes by reusing test cases from other DBMSs. However, in
contrast to our work, Sedar only re-used the SQL statements, and not their results specification.
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Studies on SQL features. Several empirical studies have been conducted that closely relate to our
study. Cui et al. [11] studied transaction implementations and found transactional compatibility
issues across DBMSs using a differential-testing methodology, while our study has a more general
scope in identifying compatibility issues. Gupta et al. [17] investigated the use of procedural
extensions in SQL—specifically, stored procedures, user-defined functions (UDFs), and triggers—in
the context of Microsoft Azure SQL Database Service. They subsequently developed a benchmark
suite and evaluated these procedural extensions, that is, the time/resources diverse procedural SQL
components spent in a given workload. Toussaint et al. [42] conducted a survey on the usage of
NULL values among DBMS users. They examined the drawbacks associated with NULL values in
SQL and how they are handled. Vogelsgesang et al. [43] analyzed the characteristics of queries
generated by a modern business intelligence (BI) tool, and found that they differ from benchmarks
used in the industry. Both the above work and our study investigated how SQL is used in practice.
However, our study primarily focuses on the testing perspective. We have examined the SQL test
suites, aiming to reuse the test cases in order to discover new bugs within the DBMSs and enhance
their reliability.

Programming language standards. Our study gave quantitative and qualitative evidence of how
SQL dialects differ in practice. Various studies have been conducted to explore the standards of SQL
and different programming languages, or formalize them. Guagliardo et al. [16] addressed the lack
of formal semantics for real-world SQL queries and provided formal semantics for a basic class of
SQL queries. Memarian et al. [27] provided an in-depth investigation into the semantics of pointers
and memory in C. Furthermore, they extended their study concerning pointer provenance [26].
They examined the discrepancies between the actual C standard and what expert C programmers
believe the standard ensures, while we focus on discrepancies between different DBMSs.

Test reusability. Various studies have been conducted on software reuse. Tiwari et al. [41] argued
the importance of software reuse and discussed approaches to test reuse. They mentioned test
reuse could reduce the test effort. Recently, test reuse has been proposed for UI testing. Zhao et
al. [49] introduced a framework that could automatically evaluate UI test reuse. Mariani et al. [25]
conducted the first empirical study on GUI events’ semantic matching and reported significant
findings to enhance test reuse approaches. Regression test suites have long been a resource for
mutation-based testing. Le et al. [22] found bugs in LLVM by using test cases from GCC. Zhong
et al. [50] used the test suite of each DBMS as the seed corpus for their mutation-based fuzzing
approach, which found many bugs in DBMSs.

8 Threats to validity
We used a common methodology [12] to identify and mitigate potential threats to our work.

Internal validity. The main threat to the internal validity of this work is potential inaccuracies in
the manual classification of failed test cases in RQ3 and RQ4, which could introduce bias, leading to
misclassification of the reasons for failed cases. We alleviate this threat by carefully investigating
the documentation and discussing any unclear reasons among the authors. Where we still failed to
determine the reasons after discussion and studying the user manuals and implementation of the
DBMSs, we reported the issue to DBMS developers. Thus, we expect that any misclassifications are
unlikely and would have little impact on the overall results.

Construct validity. The main threat to construct validity is that we designed our own test suite,
whose design decisions might affect the analyses. For instance, we chose to execute all test cases
using Python clients, and in Section 5, we found that test cases can compute different results
depending on which client is used. Implementing test case translators and using the original test
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Table 8. Coverage of executing each original test suite and SQuaLity on SQLite, DuckDB, and PostgreSQL

SQLite DuckDB PostgreSQL
Line Branch Line Branch Line Branch

Original tests 26.9% 19.8% 72.8% 46.4% 62.1% 47.2%
SQuaLity 43.4% 34.5% 74.0% 47.2% 63.0% 48.2%

runner (e.g., parsing DuckDB test cases to run on SQLite via the SLT runner) would not scale for a
larger number of test suites, as every test runner would need to support every test case format.
Despite this potential threat, we believe that the high-level insights of the study are valid even
when considering such different potential experimental setups.

External validity. The external validity of our study might be constrained by the limited scope of
the open-source DBMSs that we examined. We investigated four widely used open-source DBMS
test suites and reused three of them. However, commercially developed systems, for example,
Oracle Database, might have more extensive test suites since companies might have more resources.
To mitigate this issue, we have also investigated the test suite of CockroachDB—a DBMS mainly
developed commercially (by Cockroach Labs)—and observed similar trends there. Additionally, the
evolution of DBMSs might lead to changes in the test suites we studied, potentially limiting the
applicability of our results over time.

9 Implications
Based on our study, we have identified important actionable insights, which we subsequently
summarize.

Overcoming scalability challenges. While being the first systematic effort in test reuse of DBMSs,
SQuaLity has not fully addressed the issues of unifying SQL test suites. DBMS test suites contain
a variety of different test runner commands that need to be supported in our design. We believe
that supporting various test case formats and runner commands, as attempted in our work, is
non-scalable due to the amount of manual implementation effort that is involved. One pragmatic,
alternative approach to integrating various existing test suites based on different runner commands
could involve removing all test runner commands from the test cases, executing them on the donor
system, and assuming the outputs as the ground truth. However, this approach would necessitate
manual inspection of the results to validate whether they are correct.

Test suites for new DBMSs. For newly developed DBMSs, we recommend adopting the SQLite test
format and test suite. The reason for this is three-fold: (1) the test format is relatively simple (see
Section 3), facilitating the implementation of the test runner required to execute the test suite on
the DBMS; (2) SQLite’s tests are mostly standard-compliant, with only few testing SQLite-specific
functionality, allowing their reuse (see Section 4); and (3) compared to other systems, they have
relatively few dependencies (see Section 5). We found that, besides SQLite and DuckDB, also other
DBMSs, such as MonetDB9 and Databend10 use the SLT format in their test suites. As an alternative,
for DBMSs designed to be (partly) compatible with a potential donor DBMS, we advise utilizing its
test suites, as they can find both bugs and compatibility issues (see Section 6).

Benefits of reusing test suites. Our study provides the below key insights for DBMS developers.
First, SLT, which contains mainly standard-compliant SQL statements, can be adapted to different
9https://github.com/MonetDB/MonetDB/tree/master/sql/test
10https://github.com/datafuselabs/databend
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DBMSs with a higher success rate, and could thus help detect logic errors for basic features during
development.11 Second, other test suites often contain complex and DBMS-specific features that
may restrict or even prohibit test case reuse; despite this, we observed that some features are shared
across different systems and the test cases are valuable for finding potential bugs. Third, reusing the
composed test suite SQuaLity can help increase test coverage compared to using only the original
test suite, which we determined in an additional coverage experiment (see Table 8). We explain
this increase by the larger range of SQL statements and SQL features from different test suites that
can improve coverage for features not covered in the existing test suite as well as by testing error
handling of both parsing and semantic analysis when processing unsupported or partly-supported
features. SLT achieves a branch coverage of only 20% on SQLite. This is due to SLT containing
mostly standard-compliant SQL commands. SQLite has three harnesses. For example, the 100%
branch coverage for SQLite is achieved by another test suite of SQLite, TH3,12 which not only
contains SQL test cases, but also test cases written in C. Although SQLite and SLT are open-sourced,
the TH3 test suite is proprietary.

Supporting a new DBMS. Applying SQuaLity on a new DBMS requires supplementing the general
test runner implementation with DBMS-specific logic, as also explained in our artifact. Specifically,
interfaces need to be implemented, which establish connections to the DBMS, set up an initial
database and subsequently remove it, and execute statements and queries. Implementing them
typically requires a low effort, as they are implemented in 33 LOC on average for the DBMSs in
our experiments. Executing SQuaLity on a new DBMS is likely to cause test failures, caused by
different root causes. First, crashes are never expected. Hangs, which are also abnormal, require
developers to inspect them—they can be missed optimization or bugs. Second, when the DBMS
under test is designed for compatibility with existing dialects (e.g., PostgreSQL), developers are
advised to inspect any inconsistencies provoked by the test cases from the DBMSs they aim to
be compatible with. The discrepancies could indicate a potential bug since the semantics should
match. For failures in test cases with dialect incompatibilities, the possibility of finding bugs is
lower, and such cases could be removed. Third, developers can identify patterns in unexpected error
messages to identify potential bugs. For example, messages starting with “INTERNAL Error” are
never expected in DuckDB, and suggest bugs. Matching the patterns (e.g., using regular expressions)
of the error messages in the execution log can help detect issues after running SQuaLity.

Filling testing gaps. Our study provides actionable insights on what features are undertested,
warranting additional test cases to be written. For example, the SQL statements distribution in
RQ2 suggests that only few test cases exercise WITH statements (0.48%), which are used to specify
CTEs. In particular, we found a bug in MySQL (see Listing 14), which was identified and assigned
CVE-2024-20962, due to an issue caused by a recursive CTE. This suggests that this feature, and
other statements for which only few test cases exist, might be insufficiently tested.

Understanding SQL dialects. While SQL is commonly seen as a single language, various SQL
dialects exist as our experiments indicate. For example, previous research [16] on formalizing SQL
semantics has focused on general semantics, rather than accounting for different SQL dialects. We
identified various incompatibility issues when executing test suites across different DBMSs—18 in
SQLite, 59 in DuckDB, and 53 in PostgreSQL (see RQ4)—due to different reasons (e.g., incompatible
statements, operators, and types). These results might inform variability points for formal semantics.

11https://github.com/dolthub/dolt/issues/7079
12https://sqlite.org/th3.html

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 253. Publication date: December 2024.

https://github.com/dolthub/dolt/issues/7079
https://sqlite.org/th3.html


253:24 Suyang Zhong and Manuel Rigger

Enhancing automated testing. Many DBMS fuzzing approaches require a seed corpus, based on
which they derive follow-up inputs through mutation, and our test suite—containing more than 7
million SQL test cases—could be used as such a corpus. Recent work has demonstrated the benefits
of this. For example, Sedar [13] has detected bugs in well-known DBMSs by reusing SQL test cases.

10 Conclusion
In this paper, we have contributed a unified test suite consisting of more than 7 million SQL
statements from three test suites of widely used DBMSs as well as an empirical study concerning
different test suite features, test case patterns, and testing dependencies. Our findings for test suite
reuse are encouraging. We identified crashes and hangs by executing test cases written for one
DBMS on other DBMSs, indicating the benefits of test-case reuse. However, we also identified
various challenges that complicate test reuse. This includes the feature variety in test suite formats,
test runner commands (up to 112 commands, RQ1), SQL dialects (up to 31% of the test cases in
PostgreSQL are not standard-compliant, RQ2), and environmental dependencies (such as file path
and locale configurations, RQ3). We hope that this first study toward test case reuse for DBMSs
will inspire follow-up work and inform practitioners of the opportunities and challenges of reusing
test cases.
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